Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
International Journal of Infectious Diseases ; 130(Supplement 2):S36-S37, 2023.
Article in English | EMBASE | ID: covidwho-2321940

ABSTRACT

SARS-CoV-2, the causal agent of the COVID-19 pandemic, is related to a group of viruses (Sarbecovirus) that circulate in horseshoe bats. Its origin is still uncertain, as there is lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2. Irrespective of its origin, SARS-CoV-2 has been shown to replicate in many mammalian species. So far, over forty species have been found to be susceptible to SARS-CoV-2 infection, and natural infections have been documented in at least 23 species of distant mammalian orders, including Primata, Rodentia, Carnivora, and Arthiodactyla. In two of those species, minks and white tailed deer, continued transmission among conspecifics occurred following introduction of SARS-CoV-2 from humans, at a rate which makes mink farms and deer populations suitable compartments where the virus may be maintained and evolve, and then perhaps spill back to humans or other animals as a new variant, as suggested by molecular evidence. Considering the above, what is truly unique about this pandemic, and adds a major obstacle to attain its control, is its multi-host nature. This is another compelling example of the relevance of the 'One Health' approach. This approach recognizes the inextricable links between people and nature, and visualizes the health and disease phenomenon from an integrative perspective. The COVID-19 pandemic urges us to acknowledge the interconnection between people and the remaining forms of life, and with the environments they share, and demonstrates that the improvement of global health needs a collaborative, multisectoral, and transdisciplinary approach, acting at the local, regional and global levels. This concept becomes paramount when taking into account that most diseases affecting humans in the last decades -not only COVID-19 - have been caused by pathogens originated in animals.Copyright © 2023

2.
Vector Borne Zoonotic Dis ; 23(7): 397-400, 2023 07.
Article in English | MEDLINE | ID: covidwho-2317952

ABSTRACT

Background: Serological evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been reported in white-tailed deer (WTD) in the United States and Canada. Even though WTD are susceptible to SARS-CoV-2 infection, there is no evidence of infection by this virus in other mammalian species that might interact with WTD in nature. Similar to WTD, feral swine are widely distributed and generally occupy the same range as WTD in Texas. The objective of this study was to determine the prevalence of SARS-CoV-2 neutralizing antibody in WTD during 2020 and 2021 and determine the prevalence of SARS-CoV-2 neutralizing antibody in feral swine during 2018 (prepandemic period) and from March 2020 to February 2021 (pandemic period) in Travis County, Texas. Materials and Methods: Sera samples were collected from hunter-killed WTD and feral swine during the prepandemic and pandemic period and tested for SARS-CoV-2 antibody by a plaque reduction neutralization assay in Vero cells. Results: SARS-CoV-2 antibody was not detected in any of the 166 feral swine sera samples, including 24 samples collected during the prepandemic and 142 samples collected during the pandemic period. Furthermore, SARS-CoV-2 antibody was not detected in the 115 WTD samples collected during late 2020, but antibody was detected in WTD in early 2021. Conclusions: The results indicated that SARS-CoV-2 infection of WTD occurred during early 2021 in Travis County, Texas, but serological evidence of SARS-CoV-2 infection was not detected in the feral swine samples collected from the same locality and during the same time period of the collection of WTD samples.


Subject(s)
COVID-19 , Deer , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Texas/epidemiology , SARS-CoV-2 , Vero Cells , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , Antibodies, Neutralizing , Swine Diseases/epidemiology
3.
Ecohealth ; 20(1): 9-17, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2299096

ABSTRACT

The susceptibility of the white-tailed deer (WTD; Odocoileus virginianus) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted cervids as coronavirus reservoirs. This study aimed to evaluate the angiotensin-converting enzyme 2 (ACE2) residues which bind the spike protein of SARS-CoV-2 from 16 cervids to predict their potential susceptibility to SARS-CoV-2 infection. Eleven out of 16 species presented identical ACE2 key residues to WTD ACE2. Four cervids presented K31N, a variant associated with low SARS-CoV-2 susceptibility. Large herding of cervids with ACE2 key residues identical to that of the WTD can result in extensive reservoirs of SARS-CoV-2. Cervids as potential reservoirs could favor SARS-CoV-2 adaptation and the emergence of new coronavirus strains.


Subject(s)
COVID-19 , Deer , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Protein Binding
4.
Animals (Basel) ; 13(7)2023 Mar 26.
Article in English | MEDLINE | ID: covidwho-2296329

ABSTRACT

White-tailed deer (Odocoileus virginianus, WTD) spread communicable diseases such the zoonotic coronavirus SARS-CoV-2, which is a major public health concern, and chronic wasting disease (CWD), a fatal, highly contagious prion disease occurring in cervids. Currently, it is not well understood how WTD are spreading these diseases. In this paper, we speculate that "super-spreaders" mediate disease transmission via direct social interactions and indirectly via body fluids exchanged at scrape sites. Super-spreaders are infected individuals that infect more contacts than other infectious individuals within a population. In this study, we used network analysis from scrape visitation data to identify potential super-spreaders among multiple communities of a rural WTD herd. We combined local network communities to form a large region-wide social network consisting of 96 male WTD. Analysis of WTD bachelor groups and random network modeling demonstrated that scraping networks depict real social networks, allowing detection of direct and indirect contacts, which could spread diseases. Using this regional network, we model three major types of potential super-spreaders of communicable disease: in-degree, out-degree, and betweenness potential super-spreaders. We found out-degree and betweenness potential super-spreaders to be critical for disease transmission across multiple communities. Analysis of age structure revealed that potential super-spreaders were mostly young males, less than 2.5 years of age. We also used social network analysis to measure the outbreak potential across the landscape using a new technique to locate disease transmission hotspots. To model indirect transmission risk, we developed the first scrape-to-scrape network model demonstrating connectivity of scrape sites. Comparing scrape betweenness scores allowed us to locate high-risk transmission crossroads between communities. We also monitored predator activity, hunting activity, and hunter harvests to better understand how predation influences social networks and potential disease transmission. We found that predator activity significantly influenced the age structure of scraping communities. We assessed disease-management strategies by social-network modeling using hunter harvests or removal of potential super-spreaders, which fragmented WTD social networks reducing the potential spread of disease. Overall, this study demonstrates a model capable of predicting potential super-spreaders of diseases, outlines methods to locate transmission hotspots and community crossroads, and provides new insight for disease management and outbreak prevention strategies.

5.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: covidwho-2267700

ABSTRACT

Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.


Subject(s)
COVID-19 , Deer , Humans , Animals , Cats , Sheep , SARS-CoV-2/genetics , Suspensions , Feces
6.
Proc Natl Acad Sci U S A ; 120(6): e2215067120, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2222139

ABSTRACT

The spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (WTD) and its ability to transmit from deer to deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. Here, we present a comprehensive cross-sectional study assessing the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September to December 2020, n = 2,700) and 2021 (Season 2, September to December 2021, n = 2,762) were tested by SARS-CoV-2 real-time RT-PCR (rRT-PCR). SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 samples (21.1%) from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence of multiple SARS-CoV-2 lineages and the cocirculation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human to deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission and adaptation of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD is warranted, and measures to minimize virus transmission between humans and animals are urgently needed.


Subject(s)
COVID-19 , Deer , Animals , Humans , Animals, Wild , SARS-CoV-2/genetics , Cross-Sectional Studies , RNA, Viral/genetics , COVID-19/epidemiology
7.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2163616

ABSTRACT

There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.


Subject(s)
COVID-19 , Deer , Humans , Animals , New York City/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/veterinary , Animals, Wild
8.
Microorganisms ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099663

ABSTRACT

In the midst of a persistent pandemic of a probable zoonotic origin, one needs to constantly evaluate the interplay of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2) with animal populations. Animals can get infected from humans, and certain species, including mink and white-tailed deer, exhibit considerable animal-to-animal transmission resulting in potential endemicity, mutation pressure, and possible secondary spillover to humans. We attempt a comprehensive review of the available data on animal species infected by SARS-CoV-2, as presented in the scientific literature and official reports of relevant organizations. We further evaluate the lessons humans should learn from mink outbreaks, white-tailed deer endemicity, zoo outbreaks, the threat for certain species conservation, the possible implication of rodents in the evolution of novel variants such as Omicron, and the potential role of pets as animal reservoirs of the virus. Finally, we outline the need for a broader approach to the pandemic and epidemics, in general, incorporating the principles of One Health and Planetary Health.

9.
Emerg Microbes Infect ; 11(1): 2112-2115, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1984970

ABSTRACT

After identifying a captive herd of white-tailed deer in central Texas with >94% seroprevalence with SARS-CoV-2 neutralizing antibodies in September 2021, we worked retrospectively through archived serum samples of 21 deer and detected seroconversion of all animals between December 2020 and January 2021. We then collected prospective samples to conclude that the duration of persistence of neutralizing antibodies is at least 13 months for 19 (90.5%) of the animals, with two animals converting to seronegative after six and eight months. Antibody titres generally waned over this time frame, but three deer had a temporary 4- to 8-fold increases in plaque reduction neutralization test titres over a month after seroconversion; anamnestic response cannot be ruled out.


Subject(s)
COVID-19 , Deer , Animals , Antibodies, Neutralizing , COVID-19/veterinary , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Texas/epidemiology
10.
J Virol ; 96(8): e0025022, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1769824

ABSTRACT

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Subject(s)
Antibodies, Viral , Cats , Deer , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/veterinary , Cats/virology , Cross Reactions/immunology , Deer/virology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/diagnosis , Viral Zoonoses/virology
11.
Microbiol Spectr ; 10(2): e0057622, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1759303

ABSTRACT

Free-ranging white-tailed deer (Odocoileus virginianus) across the United States are increasingly recognized for infection and transmission of SARS-CoV-2. Through a cross-sectional study of 80 deer at three captive cervid facilities in central and southern Texas, we provide evidence of 34 of 36 (94.4%) white-tailed deer at a single captive cervid facility seropositive for SARS-CoV-2 by neutralization assay (PRNT90), with endpoint titers as high as 1,280. In contrast, all tested white-tailed deer and axis deer (Axis axis) at two other captive cervid facilities were seronegative, and SARS-CoV-2 RNA was not detected in respiratory swabs from deer at any of the three facilities. These data support transmission among captive deer that cannot be explained by human contact for each infected animal, as only a subset of the seropositive does had direct human contact. The facility seroprevalence was more than double of that reported from wild deer, suggesting that the confined environment may facilitate transmission. Further exploration of captive cervids and other managed animals for their role in the epizootiology of SARS-CoV-2 is critical for understanding impacts on animal health and the potential for spillback transmission to humans or other animal taxa. IMPORTANCE As SARS-CoV-2 vaccine coverage of the human population increases and variants of concern continue to emerge, identification of the epidemiologic importance of animal virus reservoirs is critical. We found that nearly all (94.4%) of the captive white-tailed deer at a cervid facility in central Texas had neutralizing antibodies for SARS-CoV-2. This seroprevalence is over double than that which has been reported from free-ranging deer from other regions of the United States. Horizontal transmission among deer may be facilitated in confinement. Tracking new infections among wild and confined deer is critical for understanding the importance of animal reservoirs for both veterinary and human health.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/epidemiology , COVID-19/veterinary , COVID-19 Vaccines , Cross-Sectional Studies , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Texas/epidemiology
12.
Internal Medicine Alert ; 44(3), 2022.
Article in English | ProQuest Central | ID: covidwho-1678923
13.
Farmers Weekly ; 2021(Sep 17):19-19, 2021.
Article in English | Africa Wide Information | ID: covidwho-1660873
14.
Vector Borne Zoonotic Dis ; 22(1): 62-64, 2022 01.
Article in English | MEDLINE | ID: covidwho-1565953

ABSTRACT

Serological evidence of SARS-CoV-2 infection among white-tailed deer has been reported from Illinois, Michigan, Pennsylvania, and New York. This study was conducted to determine whether deer in Texas also had evidence of SARS-CoV-2 infection. Archived sera samples collected from deer in Travis County, Texas, during 2018, before and during the pandemic in 2021 were tested for neutralizing antibody to this virus by a standard plaque reduction neutralization assay. SARS-CoV-2 antibody was not detected in 40 deer sera samples collected during 2018, but 37% (20/54) samples collected in 2021 were positive for antibody. The seroprevalence rate between males and females differed significantly (p < 0.05) and the highest rate (82%) was detected in the 1.5-year-old animals. These findings extended the geographical range of prior SARS-CoV-2 infection among white-tailed deer in the United States and further confirm that infection was common among this species.


Subject(s)
COVID-19 , Deer , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/veterinary , Female , Male , SARS-CoV-2 , Seroepidemiologic Studies , Texas/epidemiology
15.
Emerg Microbes Infect ; 11(1): 95-112, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541489

ABSTRACT

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , COVID-19/veterinary , Deer , Pregnancy Complications, Infectious , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Organ Specificity , Pregnancy , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Virus Shedding
16.
Anim Dis ; 1(1): 20, 2021.
Article in English | MEDLINE | ID: covidwho-1518328

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 are thought to transmit to humans via wild mammals, especially bats. However, evidence for direct bat-to-human transmission is lacking. Involvement of intermediate hosts is considered a reason for SARS-CoV-2 transmission to humans and emergence of outbreak. Large biodiversity is found in tropical territories, such as Brazil. On the similar line, this study aimed to predict potential coronavirus hosts among Brazilian wild mammals based on angiotensin-converting enzyme 2 (ACE2) sequences using evolutionary bioinformatics. Cougar, maned wolf, and bush dogs were predicted as potential hosts for coronavirus. These indigenous carnivores are philogenetically closer to the known SARS-CoV/SARS-CoV-2 hosts and presented low ACE2 divergence. A new coronavirus transmission chain was developed in which white-tailed deer, a susceptible SARS-CoV-2 host, have the central position. Cougar play an important role because of its low divergent ACE2 level in deer and humans. The discovery of these potential coronavirus hosts will be useful for epidemiological surveillance and discovery of interventions that can contribute to break the transmission chain. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s44149-021-00020-w.

SELECTION OF CITATIONS
SEARCH DETAIL